

Current IC, Built-in Magnetic Converter for Sensing Horizontal Magnetic Fields

MagnTek

Now Part of **NOVOSENSE**

1 Product Description

The MagnTek® MT9519 product series is a current IC that utilizes a built-in magnetic collector to convert a vertical magnetic field into horizontal magnetic dection (HMD). The traditional Horizontal Hall technology is only sensitive to the magnetic flux density applied perpendicular to the IC surface. The sensor IC using HMD technology is only sensitive to the magnetic flux density applied parallel to the surface of the IC. This is achieved by placing two pieces of magnetic conductive metal on the chip. This chip is a highly integrated Hall sensor IC that provides an output signal proportional to the magnetic flux density applied horizontally, making it suitable for current measurement. Due to its small size and use of SOP-8 package, it is very suitable as an open-loop current sensor for PCB or busbar installation. It is suitable for various current ranges from a few amperes to 1000 amperes or higher. MT9519 is user programmable, including current direction, magnetic field sensitivity gain, zero magnetic field signal output, and temperature compensation. It is very suitable for the application of on-board inverters.

The MT9519 series provides customers with SOP-8 package that meets RoHS requirements.

2 Features

- End-of-line programmable
- **•** Typical Accuracy: **---** ±1.0%(25℃)
- **■** High Linearity:
	- **---** ±0.5%(25℃)
- High Bandwidth: **---** 250kHz
- Wide Operating Temperature: **---** -40℃~150℃
- Fast Output Response Time: **---** 2.2 μs (typ.)
- Package Option: ---SOP-8
- High stability over operation temperature range: ---±1.5%(25℃~125℃)
- ---±1.5%(-40℃~25℃)
- Ratiometric Output from Supply Voltage
- Low-Noise Analog Signal Path
- RoHS Compliant: (EU)2015/863

3 Applications

1

- Vehicle mounted drive motor inverter
- PV string inverters
- Battery management system
- Switching power supplies
- Overcurrent protection

4 Product Overview of MT9519

Not to scale

Table of Contents

Reversion History

2

1 Originally Version

5 Functional Block Diagram

6 Pin Configuration and Functions

Figure.2 Pin Configuration and Functions (SOP-8)

7 Naming Specification

❶ Series Name

❷ Package Type

³ Sensitivity Range

8 Selection Guide

9 Typical Application Circuit

The typical application circuits of MT9511series products include a bypass capacitor and a filter capacitor as an additional external components. **CBYPASS capacitor between VCC and GND is necessary.** Magnetic field applied horizontally to chip surface, the analog signal output is measured directly from the VOUT pin

10 Transfer Characteristics

Figure.4 Output Voltage vs. Magnetic Range

The induction direction of the MT9519 series product is shown in the Figure.5. The current direction flowing through the copper bar is shown as IP. The magnetic field direction line generated by the magnetic focusing plate is shown as B.

Figure.5 Current Direction & Output Polarity

11 Electrical Magnetic Characteristics

11.1 Absolute Maximum Ratings

Absolute maximum ratings are limited values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.

10.2 ESD Ratings

 \mathcal{E}

11.3 Electrical Specifications

TA =-40~125 ℃, VCC=5V, CBYPASS=0.1uF (unless otherwise specified)

Continued on the next page…

Electrical Specifications(continued)

Accuracy Specification

Continued on the next page…

Electrical Specifications(continued)

TA=-40~125 ℃, VCC=5V, CBYPASS=0.1uF (unless otherwise specified)

UNES

12 Characteristic Definitions

Power On Time---TPO

When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.

The Power-On Time (TPO) is defined as the time taken between the supply reaching the minimum operating voltage VCCmin (t1), and the output voltage to settling to within $\pm 10\%$ of its steady state value under an applied magnetic field (t2) (See Figure 6).

Figure.6 **Power On Time Definition**

Propagation Delay---TPD

The time interval between a) when the primary current signal reaches 20% of its final value, and b) when the output reaches 20% of its final value (see Figure.7).

Rise Time---TR

Rise Time is the time interval between the sensor VOUT reaching 10% of its full scale value (t1), and it reaching 90% of its full scale value (t2). (see Figure.8). Both TR and TRESP can be negatively affected by any eddy current losses created if a conductive ground plane is used.

Response Time---TRESP

The time interval between a) when the primary current signal reaches 80% of its final value, and b) when the sensor reaches 80% of its output corresponding to the applied current. (see Figure.9). Both TR and TRESP can be negatively affected by any eddy current losses created if a conductive ground plane is used.

Delay to Clamp---TCLP

A large magnetic input step may cause the clamp to overshoot its steady state value. The Delay to Clamp (TCLP) is defined as the time it takes for the output voltage to settle within $\pm 1\%$ of its steady state value, after initially passing through its steady state voltage (see Figure.10)。

Quiescent Voltage Output---VOQ

In the quiescent state (no significant magnetic field: $B = OGS$), the output (VOQ), has a constant ratio to the supply voltage (VCC), throughout the entire operating ranges of VCC and ambient temperature (TA), VOQ=0.5*VCC。

Quiescent Voltage Output Drift Through Temperature Range---∆VOQ_TC

Due to internal component tolerances and thermal considerations, the Quiescent Voltage Output (VOQ), may drift from its nominal value through the operating ambient temperature (TA). The Quiescent Voltage Output Drift Through Temperature Range, *∆* VOQ_TC, is defined as:

∆VOQ_TC=VOQ(TA)−VOQ_EXPECT(TA)

VOQ_TC should be calculated using the actual measured values of VOQ(TA) and VOQ_EXPECT(TA) rather than programming target values

Sensitivity---SNST

The magnetic field horizontal to the packaging marking surface is linearly related to the output voltage. The larger the magnetic field, the greater the change in output voltage, and vice versa, the smaller the change in output voltage. This ratio is specified as the magnetic sensitivity SNST (mv / Gs) of the chip, is defined as:

> *SNST= VOUT(BPOS)^{-V}OUT(BNEG) BPOS−BNEG*

where BPOS and BNEG are two magnetic fields with opposite polarities.

Sensitivity Drift Through Temperature Range---∆SNST_TC

The temperature coefficient effect of sensitivity can cause magnetic sensitivity to deviate from its expected value in the operating ambient temperature range (TA). The Sensitivity Drift Through Temperature Range, *∆* SNST_TC, is defined as:

∆SNST_TC*= SNST(TA)−SNST_EXPECT(TA) SNST_EXPECT(TA)* [∗]*100%*

Sensitivity Drift Due to Package Hysteresis---ΔSNST_PKG

The stress effect during packaging can cause magnetic sensitivity to deviate from its expected value. The Sensitivity Drift Through Temperature Range, ΔSNST_PKG, is defined as:

$$
\Delta SNST_PKG \texttt{=}\frac{SNST_25\text{°}C_2\texttt{-}SNST_25\text{°}C_1}{SNST_25\text{°}C_1} * 100\%
$$

where SNST_25 ℃ _1 is programmed value of sensitivity at TA=25℃, and SNST_25℃_2 is the value of sensitivity at TA=25℃, after temperature cycling from TA to 150℃/168 hours and back to 25℃

Nonlinearity Sensitivity Error---ELIN

Ideally input magnetic field vs sensor output function is a straight line. The non-linearity is an indication of the worst deviation from this straight line. The ELIN in % is defined as:

$$
ELIN = \left(\frac{SNST_B1}{SNST_B2} - 1\right) * 100\%
$$

Where:

$$
SNST_B1=\left(\frac{VOUT_BPOS1-VOUT_BNEG1}{BPOS1-BNEG1}\right)
$$

$$
SNST_B2 = \left(\frac{VOUT_BPOS2-VOUT_BNEG2}{BPOS2-BNEG2}\right)
$$

and BPOSx and BNEGx are positive and negative magnetic fields, with respect to the quiescent voltage output such that |BPOS2| = |BNEG2| = Bmax, and $|BPOS2| = 2 * |BPOS1|$ and $|BNEG2| = 2$ * |BNEG1|.

Symmetry Sensitivity Error---ESYM

The magnetic sensitivity of MT9519 device is constant for any applied magnetic fields of equal magnitude and opposite polarities. Symmetry Error (ESYM) is measured and defined as:

ESYM= SNST_BPOSx SNST_BNEGx −1 [∗]*100%*

Where:

SNST_BPOSx= VOUT_Bx−VOQ Bx

SNST_BNEGx= VOQ−VOUT_Bx Bx

BPOSx and BNGx are positive and negative magnetic fields such that $|BPOSx| = |BNEGx|$.

Ratiometry Error---ERAT

The MT9519 device features ratiometric output. This means that the Quiescent Voltage Output (VOQ), magnetic sensitivity (SNST) and Output Voltage Clamp (VCLP_HI, VCLP_LO), are proportional to the Supply Voltage (VCC). In other words, when the VCC increases or decreases by a certain percentage, each characteristic also increases or decreases by the same percentage. Error is the difference between the measured change in the VCC relative to 5V, and the measured change in each Characteristic

Ratiometry Quiescent Voltage Output Error---ERAT_VOQ

ERAT VOQ, for a given supply voltage, is defined as:

$$
ERAT_VOQ = \Big(\frac{VOQ(VCC)/VCC)}{VOQ(5V)/5V} - 1\Big) *100\%
$$

Ratiometry Sensitivity Error--ERAT_SNST

ERAT SNST, for a given supply voltage, is defined as:

$$
ERAT_SNST = \left(\frac{SNST_B1(VCC)/VCC)}{SNST_B1(5V)/5V} - 1\right) *100\%
$$

Ratiometry Clamp Error---ERAT_CLP

ERAT CLP, for a given supply voltage, is defined as:

$$
ERAT_CLP = \left(\frac{VCLP(VCC)/VCC)}{VCLP(5V)/5V} - 1\right) *100\%
$$

Where VCLP is either VCLP HI or VCLP LO.

Over Current Limit---ISCLP & ISCLN

The MT9519 has over-current protection function. When IOUT≥ISCLP or ISCLN, the output driver will be closed and the output will be turned into high resistance state.

Power-On Reset---POR, Undervoltage Lockout---UVL

The descriptions in this section assume temperature = 25°C, no output load (RL, CL) , and no significant magnetic field is present.

Power-Up. At power-up, as VCC ramps up, the output is in the following power supply voltage state. When VCC exceeds VPORH, the chip will enters the handshake protocol state. When VCC exceeds VUVLOH, the output will go to 1/2*VCC or 2.5V, at this time, the chip is in normal working state.

Power-Down. If VCC drops below VUVLOL, the output will be in a high-impedance state. If VCC drops below VPORL, the output is in the following power supply voltage state (See Figure. 11).

Figure.11 **POR and UVL Definition**

13 Package Material Information (For Reference Only – Not for Tooling Use)

13.1 SOP-8 Package Information

14 Copy Rights and Disclaimer

- 1. This document may not be reproduced or duplicated, in any form, in whole or in part without prior written consent of MagnTek . Copyrights © 2019, MagnTek Incorporated.
- 2. MagnTek reserves the right to make changes to the information published in this document at anytime without notice.
- 3. MagnTek's products are limited for use in normal commercial applications. MagnTek's products are not to be used in any device or system, including but not limited to medical life support equipment and system.

For the latest version of this document, please visit our website: www.magntek.com.cn

